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The standard Caspar & Klug classification of icosahedral viruses by means of

triangulation numbers and the more recent novel characterization of Twarock

leading to a Penrose-like tessellation of the capsid of viruses not obeying the

Caspar–Klug rules can be obtained as a special case in a new approach to the

morphology of icosahedral viruses. Considered are polyhedra with icosahedral

symmetry and rational indices. The law of rational indices, fundamental for

crystals, implies vertices at points of a lattice (here icosahedral). In the present

approach, in addition to the rotations of the icosahedral group 235,

crystallographic scalings play an important rôle. Crystallographic means that

the scalings leave the icosahedral lattice invariant or transform it to a sublattice

(or to a superlattice). The combination of the rotations with these scalings

(linear, planar and radial) permits edge, face and vertex decoration of the

polyhedra. In the last case, satellite polyhedra are attached to the vertices of a

central polyhedron, the whole being generated by the icosahedral group from a

finite set of points with integer indices. Three viruses with a polyhedral enclosing

form given by an icosahedron, a dodecahedron and a triacontahedron,

respectively, are presented as illustration. Their cores share the same

polyhedron as the capsid, both being in a crystallographic scaling relation.

1. Introduction

In the celebrated paper of 1962, Physical principles in the

construction of regular viruses, Caspar & Klug (1962) formu-

lated the principles of virus architecture. Inspired by crystal-

lography (‘virus assembly is like crystallization’), they derive

polyhedra with icosahedral symmetry by folding a honeycomb

net and substituting a number of hexagons with pentagons,

like in the Fuller geodesic dome. The two-dimensional crys-

tallographic condition for the position of the pentagons in the

hexagonal lattice allowed a classification of the capsid of many

icosahedral viruses. The incompatibility of the icosahedral

symmetry with three-dimensional crystallography was

compensated by replacing strict equivalence by quasi-

equivalence. In 1984, the discovery of icosahedral quasicrystals

(Shechtman et al., 1984) promoted an alternative crystal-

lographic characterization based on the embedding of the

structure in a six-dimensional Euclidean space, where a lattice

with icosahedral symmetry is possible. Equivalently, one can

consider the projection of this lattice in the three-dimensional

space defined by the integral linear combinations of the

vectors pointing to the six non-aligned vertices of an icosa-

hedron and also denoted icosahedral lattice. In both cases, a

lattice point is labeled by a set of six integers called indices,

which are the components of the position vector with respect

to a lattice basis.

The diffraction pattern of icosahedral quasicrystals revealed

a new crystallographic symmetry: scaling invariance. The

positions of the Bragg spots were invariant with respect to a

scaling by a factor � (or of �3), where � is ð1þ
ffiffiffi
5
p
Þ=2, the

golden mean (Elser, 1985). In general, a crystallographic

scaling expressed in the basis of a lattice is represented by an

invertible matrix of infinite order with rational coefficients. By

applying crystallographic scalings to the vertices of an icosa-

hedron, one gets a whole variety of forms with vertices at

icosahedral lattice points. The Caspar–Klug configurations are

included as a special case. It is then possible to express the

Euclidean quasi-equivalence as equivalence by scale-rota-

tional transformations. These allow one to relate points situ-

ated at different radial distances. The structural relevance of

crystallographic scale rotations in biomacromolecules has

already been demonstrated for enclosing forms of axial-

symmetric proteins (Janner, 2005a,b,c) and indexed forms of

morphological units (monomers, dimers, trimers, pentamers,

hexamers and 60mers) in the capsid of the icosahedral

rhinoviruses (Janner, 2006a).

The aim of the present paper is to get a first insight into the

possible icosahedral forms given by points equivalent under



scale-rotational transformations with rational entries. Even-

tually, one then gets a classification scheme for icosahedral

viruses in terms of polyhedral forms with vertices indexed by

rational numbers. One should also be able to apply this

geometric knowledge to a symmetry-adapted characterization

of more complex viruses than the rhinovirus.

2. Definitions and notation

Considered are the six vectors a1; a2; . . . ; a6 pointing from the

center to the non-aligned vertices of an icosahedron. This set

is linearly independent of the rationals Q, therefore of the

integers Z as well, and forms a basis a ¼ fa1; a2; . . . ; a6g of

dimension 3 and rank 6. The integral linear combinations of

the ai define the points of an icosahedral lattice with basis a:

�ico ¼
Pi¼6

i¼1

niai

��ni 2 Z

� �
: ð1Þ

In the orthonormal basis e ¼ fe1; e2; e3g, the basis vectors ai

can be chosen as

a1 ¼ a0ðe1 þ �e3Þ; a2 ¼ a0ð�e1 þ e2Þ; a3 ¼ a0ð�e2 þ e3Þ;

a4 ¼ a0ð�e1 þ �e3Þ; a5 ¼ a0ð��e2 þ e3Þ; a6 ¼ a0ð�e1 � e2Þ;

ð2Þ

where a0 is the icosahedral lattice parameter and

� ¼ ð1þ
ffiffiffi
5
p
Þ=2. In addition, the �-cubic basis

c ¼ fc1; c2; . . . ; c6g, also of dimension 3 and rank 6 on Q, is

defined by

ci ¼ c0 ei; ciþ3 ¼ c0� ei; i ¼ 1; 2; 3; ð3Þ

with cubic parameter c0. The components of a vector r with

respect to the bases e, a and c, respectively, are indicated as

r ¼ ðx; y; zÞe ¼ ½n1n2 . . . n6�a ¼ ½m1m2 . . . m6�c: ð4Þ

In what follows, the labels e and a are omitted.

The indices of a point are the components of its position

vector r with respect to a given lattice basis. In this paper, the

icosahedral indices of a point are considered as the ones in the

basis a and a point is identified with its position vector:

P ¼ ½n1n2 . . . n6�: ð5Þ

Points with rational indices are indicated in this way because

their indices are uniquely determined. After multiplication by

a constant factor, rational indices can be converted into

integral ones.

The icosahedral group K ¼ 235 is the group of (proper)

rotations leaving the icosahedron invariant. It is defined by

235 ¼ fR5;R3 jR
5
5 ¼ R3

3 ¼ ðR5 R3Þ
2
¼ 1g: ð6Þ

Chosen for R5 is the fivefold rotation around a1 and for R3 the

threefold rotation around a1 þ a2 þ a3. The twofold rotation

around e3 is given by R2
5R3R�1

5 . In the basis a, these rotations

have a six-dimensional integer matrix representation:

5ðaÞ ¼ R5ðaÞ ¼

1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0
BBBBBBBB@

1
CCCCCCCCA
;

3ðaÞ ¼ R3ðaÞ ¼

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 �11 0

0 0 0 0 0 �11

0 0 0 1 0 0

0
BBBBBBBB@

1
CCCCCCCCA
;

2zðaÞ ¼ R2ðaÞ ¼

0 0 0 1 0 0

0 �11 0 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 �11

0
BBBBBBBB@

1
CCCCCCCCA
:

ð7Þ

A three-dimensional scaling S� with scaling factor � trans-

forms by �-multiplication all the components of a vector. A

one-dimensional scaling Sb;� scales by � the components

parallel to the given vector b and leaves invariant the

perpendicular components. For a two-dimensional scaling

S?b;� it is the other way round: the parallel components are left

invariant and the perpendicular ones are scaled by �. Indi-

cating by rk and r? the parallel and perpendicular components

of r with respect to b (r ¼ rk þ r?; r?b ¼ 0Þ, one gets the

relations

S�r ¼ �r; Sb;�r ¼ �rk þ r?; S?b;�r ¼ rk þ �r?: ð8Þ

This implies

S� ¼ Sb;�S?b;�: ð9Þ

With b ¼ ei and X� ¼ Se1;�
, Y� ¼ Se2;�

and Z� ¼ Se3;�
, one has:

S�ðx; y; zÞ ¼ ð�x; �y; �zÞ; X�ðx; y; zÞ ¼ ð�x; y; zÞ;

S�X�1
� ðx; y; zÞ ¼ ðx; �y; �zÞ ¼ Y�Z�ðx; y; zÞ:

ð10Þ

In the icosahedral basis a, the scaling transformations S� and

X� are represented by six-dimensional invertible matrices with

rational coefficients:
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S�ðaÞ ¼
1

2

1 1 1 1 1 1

1 1 1 �11 �11 1

1 1 1 1 �11 �11

1 �11 1 1 1 �11

1 �11 �11 1 1 1

1 1 �11 �11 1 1

0
BBBBBBBB@

1
CCCCCCCCA
;

X�ðaÞ ¼
1

2

1 1 0 1 0 1

1 2 0 �11 0 0

0 0 2 0 0 0

1 �11 0 1 0 �11

0 0 0 0 2 0

1 0 0 �11 0 2

0
BBBBBBBB@

1
CCCCCCCCA
:

ð11Þ

S� , X� , Y� and Z� leave invariant the set of all points with

rational icosahedral indices. After multiplication by 2, these

matrices become integral and transform integer indices into

integer indices. This situation is generalized to rational icosa-

hedral scalings with an integer factor f0, where f0 is the smallest

integer factor that transforms the rational matrix into one with

integer entries.

The icosahedral forms considered are given in terms of a set

of points with rational indices and icosahedral symmetry. The

icosahedral polyhedral forms represent the special case where

the given points are at the vertices of the polyhedron. The

other forms are decorated polyhedral forms of various types:

with face, edge or vertex decoration. The last case is repre-

sented by the protuberances observed in non-enveloped

viruses, as in the case of the adenovirus (Stewart et al., 1991),

or of the spiroplasma virus (Chipman et al., 1998). One can

restrict the considerations to points with integer indices and

specify the form in terms of generators. The generators are

icosahedral inequivalent points which generate the whole

form by applying the icosahedral group. It is convenient to

indicate by ðVEFÞ the number V of vertices, E of edges and F

of faces of a polyhedral form. These integers satisfy the Euler

relation V � Eþ F ¼ 2.

Examples of important icosahedral polyhedral forms

generated from one or two points with integer entries are:

Icosahedron: I = {235 [100000]} with (12 30 20) is generated

from a1 by 235 and has 12 vertices, 30 edges and 20 triangular

faces.

Dodecahedron: D = {235 [111000]} with (20 30 12) is

generated from a1 þ a2 þ a3 and has 20 vertices, 30 edges and

12 pentagonal faces.

Icosidodecahedron: ID = {235 [110000]} with (30 60 32) has

20 triangular faces and 12 pentagonal ones (Coxeter, 1963).

Triacontahedron: TR = {235 [200000], ½111�111�11�} (32 60 30)

has 30 rhombic faces, 12 icosahedral and 20 dodecahedral

vertices. Discovered by Kepler, it is the projection in three

dimensions of a six-dimensional cube.

Truncated icosahedron: TI = {235 [210000]} with (60 90 32)

is one of the Archimedean solids. It is obtained by cutting an

edge-decorated icosahedron, has 12 pentagonal and 20

hexagonal faces, 60 vertices and 90 edges. It corresponds to a

Fuller polyhedron.

3. Fractional and golden icosahedral scalings

Fractional icosahedral crystallographic scalings are scaling

transformations (one-dimensional, two-dimensional and

three-dimensional in the three-dimensional space) with a

fractional scaling factor and represented with respect to the

icosahedral lattice basis a by invertible matrices with rational

coefficients. The golden ones have a power of � as scaling

factor.

3.1. Radial scalings (three-dimensional)

In addition to the scaling S� with scaling factor � already

indicated, the multiplication of vector components by a frac-

tional number m=n is trivially a three-dimensional rational

scaling. It is represented by the unit matrix multiplied by m=n:

Sm=nðaÞ ¼
m

n
11; m; n 2 Z; n 6¼ 0: ð12Þ

The integer factor is in this case f0 ¼ n.

3.2. Linear scalings (one-dimensional)

The one-dimensional scaling X� indicated in the previous

section in the orientation fixed by the a basis is along a twofold

axis of the icosahedron. The corresponding fractional scaling

Xm=n has in the �-cubic c basis a very simple diagonal matrix

representation. The one in the basis a follows directly:

Xm=nðaÞ ¼
1

2n

mþ n 0 0 �mþ n 0 0

0 mþ n 0 0 0 m� n

0 0 2n 0 0 0

�mþ n 0 0 mþ n 0 0

0 0 0 0 2n 0

0 m� n 0 0 0 mþ n

0
BBBBBB@

1
CCCCCCA
;

ð13Þ

with m; n 2 Z; n 6¼ 0.

Linear scalings by � and by m=n, respectively, are rational in

the icosahedral basis a.

In the case of a linear scaling along the fivefold axis, a1 is

chosen as the scaling direction left invariant by the rotation R5

which permutes cyclically the other basis vectors:

R5 : a1 ! a1; a2 ! a3 ! a4 ! a5 ! a6 ! a2: ð14Þ

The scaling is fixed by the transformations of the basis vectors

decomposed into their parallel and perpendicular components

with respect to a1. The parallel components of a2; a3; . . . ; a6

are all equal:

aik ¼
1
5 ða2 þ a3 þ . . .þ a6Þ ¼

1
5 ½011111�; i ¼ 2; . . . ; 6: ð15Þ

The perpendicular components follow from ai? ¼ ai � aik. For

Sa1;�
, one has

Sa1;�
ai ¼ �aik þ ai? ¼ S�aik þ ai?; i ¼ 1; . . . ; 6; ð16Þ

with S� given in (11). Taking a2 as an example, one finds
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Sa1;�
½010000� ¼ 1

10 ½511111� þ 1
5 ½04�11�11�11�11� ¼ 1

10 ½59�11�11�11�11�: ð17Þ

The transformation of the other basis vectors follows by cyclic

permutation. One gets

Sa1;�
ðaÞ ¼

1

10

5 5 5 5 5 5

5 9 �11 �11 �11 �11
5 �11 9 �11 �11 �11
5 �11 �11 9 �11 �11
5 �11 �11 �11 9 �11
5 �11 �11 �11 �11 9

0
BBBBBB@

1
CCCCCCA

ð18Þ

with the integer factor f0 ¼ 10. In a similar way, one derives

the fractional linear scaling along a1:

Sa1;m=nðaÞ ¼
1

5n

5m 0 0 0 0 0

0 mþ 4n m� n m� n m� n m� n

0 m� n mþ 4n m� n m� n m� n

0 m� n m� n mþ 4n m� n m� n

0 m� n m� n m� n mþ 4n m� n

0 m� n m� n m� n m� n mþ 4n

0
BBBBBB@

1
CCCCCCA

ð19Þ

with m; n 2 Z; n 6¼ 0 and f0 ¼ 5n.

The threefold rotation R3 transforms the basis vectors ai

according to

R3 : a1 ! a2 ! a3 ! a1; a4 ! a6 !�a5 ! a4; ð20Þ

and leaves the two vectors a1 þ a2 þ a3 and a4 � a5 þ a6

invariant. Both are along the threefold axis chosen. The

parallel components then follow:

a1k ¼ a2k ¼ a3k ¼
1
3½111000�;

a4k ¼ �a5k ¼ a6k ¼
1
3½0001�111�:

ð21Þ

The remaining steps are similar to those of the fivefold case.

With d1 ¼ ½111000�, one gets

Sd1;�
ðaÞ ¼

1

6

7 1 1 1 �11 1

1 7 1 1 �11 1

1 1 7 1 �11 1

1 1 1 3 3 �33
�11 �11 �11 3 3 3

1 1 1 �33 3 3

0
BBBBBB@

1
CCCCCCA
; ð22Þ

Sd1 ;m=nðaÞ ¼
1

3n

mþ 2n m� n m� n 0 0 0

m� n mþ 2n m� n 0 0 0

m� n m� n mþ 2n 0 0 0

0 0 0 2mþ n �mþ n m� n

0 0 0 �mþ n mþ 2n �mþ n

0 0 0 m� n �mþ n 2mþ n

0
BBBBBB@

1
CCCCCCA
:

ð23Þ

The linear scalings along the other threefold and fivefold

directions are obtained by conjugation with elements of the

icosahedral group. Edge decoration of a polyhedral form can

be obtained by a linear scaling along a given edge. For

example, by applying Y1=3 to a2, one gets the edge-decorated

icosahedron of Fig. 1.

3.3. Planar scalings (two-dimensional)

The scalings in planes perpendicular to the twofold, three-

fold and fivefold axes are obtained by a combination of radial

and linear scalings, as already mentioned. So, for example,

using

S?a1;�
¼ S�S

�1
a1;�
¼ S�Sa1;1=�

¼ S�1
?a1;1=�

; ð24Þ

one gets from equations (11) and (18)

S?a1;�
ðaÞ ¼

1

5

5 0 0 0 0 0

0 3 3 �22 �22 3

0 3 3 3 �22 �22
0 �22 3 3 3 �22
0 �22 �22 3 3 3

0 3 �22 �22 3 3

0
BBBBBB@

1
CCCCCCA
: ð25Þ

In addition to the cases considered, the planar pentagrammal

and hexagrammal scalings deserve attention. They play an

important rôle in axial symmetric proteins (Janner, 2005a,b,c)

and in forms enclosing pentameric and trimeric morphological

units of the capsid of the rhinovirus (Janner, 2006a). The

planar pentagrammal scaling f5=2g has the scaling factor

�1=�2, where fm=ng is the Schäfli symbol of the corresponding

star polygon (Coxeter, 1961). In the present notation, it is

given by S?a1;�1=�2, which is different from �S?a1;1=�
2 because

the scaling factor �1=�2 is associated with a planar inversion

and not with a three-dimensional total inversion. For the

inversion in the plane perpendicular to a1 one has
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Figure 1
Edge-decorated icosahedron obtained by linear scaling from the vertices.
The generating points are [300000], ½0200001� ¼ Yð1=3Þ½030000�, where
Yð1=3Þ scales the corresponding y coordinate to y=3. In this figure and in
the following ones, the projections along a fivefold, a threefold and a
twofold axis are given at top, bottom and middle positions, respectively.



I?a1
: a1 ! a1; a2 !�a2 þ 2a2k ¼ ½0�110000� þ 2

5 ½011111�

ð26Þ

and so on, giving

I?a1
ðaÞ ¼

1

5

5 0 0 0 0 0

0 �33 2 2 2 2

0 2 �33 2 2 2

0 2 2 �33 2 2

0 2 2 2 �33 2

0 2 2 2 2 �33

0
BBBBBB@

1
CCCCCCA
: ð27Þ

Finally, the pentagrammal scaling in the planes perpendicular

to the fivefold axis a1 is given by the integer matrix

S?a1;�1=�2ðaÞ ¼ S?a1;f5=2gðaÞ

¼ I?a1
ðaÞS�2

?a1;�
ðaÞ

¼

1 0 0 0 0 0

0 �11 1 0 0 1

0 1 �11 1 0 0

0 0 1 �11 1 0

0 0 0 1 �11 1

0 1 0 0 1 �11

0
BBBBBBBB@

1
CCCCCCCCA
: ð28Þ

The decagrammal scalings also give rise to planar scalings with

rational entries. This property fits with the empirical obser-

vation of the rôle of decagrams in the enclosing forms of

pentameric morphological units in the rhinovirus (Janner,

2006a).

For the hexagrammal scaling by
ffiffiffi
3
p

of the hexagonal star

polygon f6=2g of triangular faces in planes perpendicular to a

threefold direction, here chosen to be d1 ¼ ½111000�, one finds

S?d1;f6=2gðaÞ ¼
1

3

4 �22 1 0 0 0

1 4 �22 0 0 0
�22 1 4 0 0 0

0 0 0 4 �11 �22
0 0 0 2 4 �11
0 0 0 1 2 4

0
BBBBBB@

1
CCCCCCA
: ð29Þ

In this case, the integer factor is f0 ¼ 3 and not 1 as for the

pentagrammal scaling (28). Planar scalings allow face

decoration. The face decoration of Fig. 2 has been obtained by

applying pentagrammal scalings to the vertices of a dodeca-

hedron. That of Fig. 3 follows in a similar way from the planar

scalings S?ai;1=�
.

4. Indexed icosahedral forms

The forms considered (polyhedra and decorated polyhedra)

are specified by a set of points with icosahedral symmetry and

rational indices (in the basis of an icosahedral lattice). Vertices

and faces are indexed accordingly. These forms can be given in

terms of point generators with integer indices.
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Figure 2
Face-decorated dodecahedron obtained by planar pentagrammal scalings.
The generating points are [111000] and ½100101� ¼ Y?a1;f5=2g½111000�.

Figure 3
Pentagonal face-decorated dodecahedron obtained by the planar
pentagonal scaling with scaling factor 1=�. The generating points are
[555000] and ½5333�223� ¼ S?a1;1=�

½555000�.



4.1. Caspar–Klug construction

Caspar & Klug start from a planar honeycomb net (Caspar

& Klug, 1962). The centers of the honeycomb hexagons form a

hexagonal lattice (and a net of equilateral triangles) with basis

b ¼ fb1; b2g and lattice parameter b0:

jb1j ¼ jb2j ¼ b0; b1 b2 ¼
1
2 b2

0: ð30Þ

The hexagonal lattice points are indicated as

½z1; z2� ¼ z1b1 þ z2b2 2 �h; z1; z2 2 Z: ð31Þ

The honeycomb hexagons have radius rhc ¼ b0=
ffiffiffi
3
p

and area

Ahc ¼
ffiffiffi
3
p
=2b2

0. The icosahedral face has area A ¼
ffiffiffi
3
p

a2
0 and

edge ja1 � a2j ¼ 2a0, with a0 the icosahedral lattice parameter.

The hexagonal lattice is chosen in the plane perpendicular to

d1 ¼ a1 þ a2 þ a3 and origin at a1. The three vertices a1; a2; a3

of a triangular face of the icosahedron are brought in co-

incidence with the lattice points ½0; 0�, ½h; k� and ½�k; hþ k�,

respectively. This is expressed by the set of equations

a2 � a1 ¼ hb1 þ kb2

a3 � a1 ¼ �kb1 þ ðhþ kÞb2

ð32Þ

or, equivalently,

Tb1 ¼ ðh
2
þ hkþ k2

Þb1 ¼ �ha1 þ ðhþ kÞa2 � ka3

Tb2 ¼ ðh
2 þ hkþ k2Þb2 ¼ �ðhþ kÞa1 þ ka2 þ ha3;

ð33Þ

with T ¼ h2 þ hkþ k2 the triangulation number. The relation

between the hexagonal and the icosahedral lattice parameters

is given by Tb2
0 ¼ 4a2

0. The folding of the triangular net into the

triangular facets of the icosahedral form is obtained by

replacing the honeycomb hexagons with center at a1; a2; a3,

respectively, by regular pentagons and repeating the pro-

cedure for the other icosahedral faces as well. The vertices of

the Caspar–Klug polyhedron (CK polyhedron) are obtained

from the hexagonal lattice points in the fundamental region

of the icosahedron formed by one vertex, one side and 1=3 of

the internal points of an icosahedral face. Its area is

A0 ¼ ð1=
ffiffiffi
3
p
Þa2

0. These vertices have rational indices given by

the relation

½z1; z2� ¼
1

T
½T � z1h� z2ðhþ kÞ; z1ðhþ kÞ þ z2k;

� z1kþ z2h; 0; 0; 0�; ð34Þ

with ½z1; z2� 2 A0 and z1; z2 2 Z. The full set of vertices is

obtained by applying to these points the group 235. The

number of hexagons used for one face of the icosahedron is

given by the ratio

A

Ahc

¼
ffiffiffi
3
p

a2
0

. ffiffiffi
3
p

2
b2

0

� �
¼

T

2
: ð35Þ

The hexagons substituted by pentagons represent the fraction

Ahc=2 of the area A. There are therefore 20ðT � 1Þ=2 vertices

at the centers of the hexagons and 12 at the pentagonal

centers, yielding for the total number of vertices V ¼ 10T þ 2,

as indicated in Caspar & Klug (1962). The area of each

triangular facet is half Ahc, so that their total number F is

2A=Ahc ¼ 20T. A facet is obtained from a tessellation of the

triangular face of the icosahedron into smaller regular tri-

angles. From the Euler relation follows the number of edges

E ¼ 30T. Thus the polyhedron obtained by the Caspar–Klug

construction has

ðVEFÞ ¼ ð½10T þ 2� 30T 20TÞ: ð36Þ

The generators of these forms are obtained from lattice points

obeying (34). With f the largest cofactor of h and k and P

given by T ¼ Pf 2, the integer indices are obtained from (34)

for h, k relatively prime, by multiplication with P after

substituting T by P. Expressing R3 in the basis b, taking into

account the shift in origin, one easily finds the inequivalent

points among those belonging to the icosahedral face

ða1; a2; a3Þ. Expressed in the Seitz notation fR j tgr ¼ Rrþ t,

one has

R3ðbÞ ¼
�11 �11

1 0

 !��� ½h; k�

( )
;

R2
3ðbÞ ¼

0 1

�11 �11

� ���� ½�k; hþ k�

� �
:

ð37Þ

The low-indices CK polyhedra are listed in Table 1.
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Table 1
Low-indices Caspar–Klug icosahedral polyhedra with triangulation number T ¼ Pf 2 and ðVEFÞ ¼ ð½10T þ 2�30T20TÞ.

h k P f T Planar net ½z1z2� Generators ½n1n2n3n4n5n6�

1 0 1 1 1 [00] [100000]
2 4 [00], [10] [200000], [110000]
3 9 [00], [10], [11] [300000], [210000], [111000]
4 16 [00], [10], [400000], [310000],

[20], [11] [220000], [211000]
5 25 [00], [10], [20], [500000], [410000], [320000],

[11], [21] [311000], [221000]

1 1 3 1 3 [00], [01] [300000], [111000]
2 12 [00], [01], [600000], [411000],

[02], [11] [222000], [330000]

2 1 7 1 7‘ [00], [01] [700000], [412000]

1 2 7 1 7d [00], [01] [700000], [421000]



The concept of icosadeltahedron, defined in Caspar & Klug

(1962) as a polyhedron with icosahedral symmetry and all

faces equilateral triangles, has been avoided because, in

general, it is not compatible with the folded cardboard

construction. In particular, for T ¼ 7 there are 12 pentagonal

vertices Vp and 60 hexagonal ones Vh. Nearest-neighbor

vertices all have the same distance in the plane but not in

space. In space, there are two different triangular edges. For

neighboring Vp and Vh, one has

jVp � Vh j ¼ jR3Vh � Vh j 6¼ jR5Vh � Vh j; ð38Þ

because Vh is on the same icosahedral face as R3Vh but on a

different one to R5Vh. So there is no icosadeltahedron for

T ¼ 7, only a quasi-icosadeltahedron.

Icosahedral viruses have the tendency to optimize a

compact surface arrangement (a property taken into account

by the Caspar & Klug construction) with an approximate

spherical symmetry. Starting from a CK polyhedron by a

suitable radial scaling of one or more of the generators, it is

possible to realize low indices icosahedral polyhedra with a

quasi-spherical shape. For the Caspar & Klug T ¼ 7d case

(where d means dextro) with generators [700000] and

[421000], see Table 1, by radial scaling the second generator is

transformed into S2=�½421000� ¼ ½�1135315�, yielding a quasi-

spherical polyhedron with the same number of vertices, edges

and faces, respectively (Fig. 4).

Another example is the ico-dodecahedron introduced in

Janner (2006a) as the enclosing form of the rhinovirus capsid.

By the radial scaling S1=�2 of the dodecahedral vertex [111000],

one gets S1=�2 ½111000� ¼ 1
2 ½111�111�11� in addition to the icosa-

hedral vertex at [100000]. The corresponding integer genera-

tors of the ico-dodecahedron are ½200000�; ½111�111�11� with 32

vertices, 90 edges and 30 faces as the T ¼ 3 CK icosahedron,

generated by [3000000] and [111000], as indicated in Table 1,

which yields a less good spherical approximation. The 32

vertices of the ico-dodecahedron (not those of the corre-

sponding CK-polyhedron) define a triacontahedron with half

as many rhombic faces, instead of 60 triangular facets (Fig. 5).

The triacontahedron is the three-dimensional projection of a

six-dimensional hypercube and plays an important rôle in

icosahedral quasicrystals (Steinhardt & Ostlund, 1987).

4.2. Off-center (satellite) polyhedra

In the planar polygrammal case, the combination of rota-

tional symmetries with linear scalings leads to off-center

regular polygons. The transformations involved are always

linear ones leaving the central origin invariant and are not

around the centers of the new polygons. Off-center polygonal
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Figure 4
Quasi-spherical polyhedron with icosahedral symmetry and triangulation
number T ¼ 7d. The point generators [700000] and ½�1135315� ¼
S2=� ½421000� from the corresponding Caspar–Klug polyhedron by radial
scaling with factor 2=� of the non-icosahedral vertex [421000].

Figure 5
The triacontahedron, discovered by Kepler in 1611, which is the
projection in three dimensions of the six-dimensional cube, has point
generators [200000] and ½111�111�11� ¼ S1=�2 ½111000�. It has 32 vertices and
30 rhombic faces. The corresponding 60 triangular facets define the ico-
dodecahedron obtained from a T ¼ 3 Caspar–Klug polyhedron by
rescaling of the dodecahedral vertices (Janner, 2006a).



boundaries (in projection) have been shown to occur in

biomacromolecules with sevenfold axial symmetry (Janner,

2002) and are observed for other rotational symmetries as

well.

In the icosahedral case, one can get a whole variety of off-

center indexed polyhedra by combining icosahedral rotations

with linear, planar and radial scalings of the type derived in

the previous section. It is not possible (and even not neces-

sary) to discuss here all these situations. It is important only to

be aware of the existence of satellite polyhedra in order to be

able to recognize the occurrence in the morphology of specific

viruses like those with protruding proteins, as already

mentioned.

As a first example, satellite icosahedra are derived, which

correspond to a vertex-decorated icosahedron. One applies to

the vertices of a starting central icosahedron the conjugated

linear scaling RX�R
�1, for all R 2 235, together with the radial

scaling S� , invariant with respect to these conjugations. The

result is shown in Fig. 6. Instead of a linear scaling along a

twofold direction (as it is X�), one can consider those along

threefold and fivefold axes. In particular, one then obtains 20

satellite dodecahedra attached in a way similar to the vertices

of a central dodecahedron.

Another example is based on a linear scaling along the

threefold direction d1 ¼ a1 þ a2 þ a3, with a scaling factor �.

This leads to consideration of the two generators ½7111�111� and

½11133�33� as one sees from (22). The satellite polyhedra

generated by these two vector positions are truncated

pentagonal pyramids attached to the 12 vertices of a central

icosahedron generated from [600000] (see Fig. 7). Similar

results are obtained with other scaling factors.

Even more variations follow from alternative combinations

of icosahedral rotations with planar scalings.

5. Morphology of icosahedral viruses

Considered are models for the capsid of virions with icosa-

hedral symmetry. A geometric characterization can be given in

terms of positions or of arrangement of architectural elements.

In the PDB files, one finds the full set of atomic positions.

For a geometric morphological model, it is enough to specify

the C� positions of the polypeptide chains of the monomers

involved. A further approximation of the structure is repre-

sented by the positions of monomers or of clusters of mono-

mers organized in morphological units like capsomers, trimers,

pentamers, hexamers and so on.

5.1. Tiling models

Instead of giving positions, one can partition the virial

surface in polygonal tiles. In the Caspar–Klug construction,
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Figure 6
The 12 off-center (satellite) icosahedra attached to the vertices of a
central icosahedron are obtained by combining the rotations of the
icosahedral group 235 with linear and radial scalings. In the present case,
the scaling factor is � and the generating points are [200000], [110101],
½120�1100� and [111111].

Figure 7
Icosahedron with vertices decorated by truncated pentagonal pyramids.
The generating points are at [600000], ½7111�111� and ½11133�33�. This
decoration could be a model for viruses with protruding proteins like the
spiroplasma virus.



the tiles are triangular, possibly further subdivided to take into

account the different ternary structures of the monomers. The

last case is exemplified by a trapezoidal partition of the

triangular facets of the CK polyhedron with triangulation

number T ¼ 3 defining the arrangement of the major capsid

proteins VP1, VP2 and VP3 of the common cold virus

(rhinovirus) (Rossmann et al., 1987).

In a recent paper, the structural puzzle represented by the

72 pentamers in the polyoma virus and the simian virus 40 has

been solved by considering a Penrose-like tessellation of the

icosahedron in rhombus and kite tiles (Twarock, 2004). In

doing so, the author R. Twarock generalizes the quasi-

equivalence of Caspar & Klug.

Alternatively, the structural organization of the capsid of

several serotypes of the human rhinovirus has been ap-

proached in terms of three-dimensional polyhedral forms

instead of two-dimensional polygonal tiles (Janner, 2006a).

These polyhedra enclose structural units, ranging from indi-

vidual monomers to the full molecular capsid. The quasi-

equivalence of Caspar & Klug has been replaced by crystal-

lographic scale rotations, like those considered in the previous

sections, relating polyhedral vertices at points of an icosahe-

dral lattice. As has been shown in x4, the Caspar–Klug

construction appears as a special case. The trapezoidal tiling of

Rossmann et al. (1987) is consistent with the crystallographic

approach applied to the ico-dodecahedron (Fig. 8a), which is a

better polyhedral enclosing form for the rhinovirus than the

icosahedron of Caspar & Klug for T ¼ 3 adopted in Ross-

mann et al. (1987).

The Penrose-like icosahedral tiling of Twarock for T ¼ 7d

can also be obtained from polyhedral vertices at icosahedral

lattice points (Fig. 8b). Both tessellations already appear in the

case of 60 equal monomers, as illustrated in Figs. 9(a),(b).

While the trapezoidal tessellation directly follows from the

Caspar–Klug construction, this is not the case for the kite

tiling of the dodecahedron.

In all these cases, the vertices are related by crystallographic

scale rotations. In the nomenclature adopted in Janner

(2005a,b,c), one can say the capsid of these viruses represents

a strongly correlated structure. It means that only one par-

ameter suffices for expressing the metrical properties of the

enclosing polyhedron.
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Figure 8
(a) Trapezoidal tessellation of the T ¼ 3 ico-dodecahedron generated
from [200000] and ½111�111�11�, as in Fig. 5. Tessellation points are
1
3 ½5111�111�11�; 1

3 ½313�111�11�; 2
3 ½211�111�11� and 2

3 ½201000�. (b) Rhombus and kite
tessellation fitting to the T ¼ 7d polyoma virus in the way indicated by
Twarock (2004). The generating points are 7[100000], 7½111�111�11�, ½�1135315�
and 1

3 ½17; 5; �11; 5; �1717; �11�.

Figure 9
(a) Trapezoidal tessellation of the icosahedron into 60 facets with
generating points [300000], [111000] and [210000]. (b) Corresponding kite
tessellation of the dodecahedron.



5.2. Form polyhedra

The standard classification of icosahedral viruses according

to the triangulation number T of Caspar & Klug is adapted to

the icosahedral point symmetry of the capsid, but not always

to its shape. The virial morphology is better characterized by a

form polyhedron, as in crystal growth forms.

The capsid is delimited (within a reasonable accuracy) by

two or more such polyhedra: an external one enclosing the

virion, an internal one delimited by the core and possibly

additional ones for layers of protein subunits (Caspar & Klug,

1962). Three illustrative examples are presented with form

polyhedra given by an icosahedron, a dodecahedron and an

ico-dodecahedron (triacontahedron), respectively.

The first example is one of the smallest icosahedral viruses,

the satellite panicum mosaic virus, with structure determined

by Ban & McPherson (1995) (PDB 1stm). It has a T ¼ 1

icosahedron as enclosing form (Fig. 10, upper part). The form

polyhedron of the core is also an icosahedron in a radial

scaling relation by a factor 1=� with the external icosahedron

(Fig. 11). One sees that free ends of the coat proteins cross the

core boundary, mostly in a plane perpendicular to a twofold

axis. Nevertheless, these form icosahedra keep their structural

meaning.

The second example, again a T ¼ 1 virus, is the canine

parvovirus, with a structure determined by Xie & Chapman

(1996) (PDB 4dpv). The form polyhedron is a dodecahedron

(Fig. 10, middle part), so that the natural tiling is not a triangle

but a kite (not shown in Fig. 10, see Fig. 9b). Only a fraction of

the coat proteins involved in the various equatorial regions of

the capsid are delimited by two dodecahedra in a 1=�-scaling

relation, one external and one internal (Fig. 12, left-hand

side). The plot of the remaining equatorial coat proteins, in

axial projection on the right-hand side of Fig. 12, suggests the

1:2 scaling ratio indicated. This is, however, only an effect of

the projection of chain segments which extend far beyond the

corresponding equatorial plane.

The bacteriophage MS2 is the third example. It is a T ¼ 3

virus with structure determined by Golmohammadi et al.

(1993) (PDB 2ms2). This selection has been suggested by G.

Vriend because the coat protein has a fold that is different

from the fold of many other virial coat proteins and, in

particular, to that of another T ¼ 3 virus, the rhinovirus whose
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Figure 10
Three different form polyhedra enclosing icosahedral viruses are shown
in a projection along the twofold axis: an icosahedron (upper part), a
dodecahedron (middle part) and a triacontahedron (lower part)
delimiting the capsid of the T ¼ 1 satellite panicum mosaic virus, the
T ¼ 1 canine parvovirus and the T ¼ 3 bacteriophage MS2, respectively.
The icosahedral vertices are indicated by open circles, the dodecahedral
ones by filled circles.

Figure 11
Two icosahedra, related by a radial scaling with factor �, delimit the
capsid of the T ¼ 1 satellite panicum mosaic virus. Free ends of the
monomers penetrate in projection into the core region, mainly along a
plane perpendicular to the twofold axis. Only the monomers of the
corresponding equatorial regions are plotted.



enclosing form is a triacontahedron (Janner, 2006a). Despite

the difference in folding and in the secondary structure of the

proteins involved, the form polyhedron of MS2 is also a tri-

acontahedron (Fig. 10, lower part). Both have a triacontahe-

dron as internal polyhedral forms as well. For the rhinovirus,

the scaling ratio between the external and the internal tri-

acontahedra is 1=� (Janner, 2006a). In the original version of

this paper, the same ratio was also indicated for MS2, but this

is actually not the case, as remarked by R. Twarock. Evidence

is given in Janner (2006b) that for MS2 the scaling ratio is 3=4

and the internal surface of the capsid is practically spherical

(this last aspect also appears in the equatorial slabs of MS2

plotted by a PhD student of Twarock). Therefore, the capsid is

enclosed in the external triacontahedron and circumscribes

the internal one. For the rhinovirus and for MS2, the vertices

of each pair of polyhedra are at points of an icosahedral

lattice.

6. Final remarks

As has been shown, there is an incredible variety of polyhedra

with icosahedral point symmetry having vertices and other

decoration points with rational indices (this means at points of

an icosahedral lattice). They are easily implemented by

applying to few generating positions with integer indices the

transformations of the icosahedral group. In all the cases

considered, the generated points at different radial distance

from the center are related by crystallographic scaling trans-

formations of different type (radial, planar or linear), which

have a rational matrix representation when expressed in an

icosahedral lattice basis. The points of the decorated poly-

hedra are, therefore, related by crystallographic icosahedral

scale rotations. By these linear transformations, one obtains

not only edge and face decorations but also off-center

(satellite) polyhedra attached to the vertices of a starting

polyhedron with icosahedral symmetry (vertex decoration).

The approach already allows a geometrical classification of

icosahedral viruses which includes as special case the classifi-

cation of Caspar & Klug (1962) in terms of a triangular surface

net and other polygonal tiling of icosahedral polyhedra, like

the rhombus and kite Penrose-like tessellation considered by

Twarock for solving the puzzle of viruses not obeying the

Caspar–Klug rules (Twarock, 2004). One even gets a kite

tessellation for the simplest dodecahedral virus case (Fig. 9b).

These ideas are illustrated by three simple icosahedral

viruses: the bacteriophage MS2, the satellite panicum mosaic

virus and the canine parvovirus, in addition to the rhinovirus

already considered in a previous work (Janner, 2006a). In all

these cases, the internal form polyhedron (delimited by the

core) is related to the external one of the capsid by a crys-

tallographic radial scaling with scaling factors 1=� or 3=4.

What has been presented is the starting point only of a more

comprehensive classification of the known icosahedral viruses

as listed, for example, at the web site of Virus World (http://

virology.wisc.edu/virusworld). There, the viruses are classified

according to the Caspar & Klug triangulation numbers, inde-

pendently of whether the Caspar–Klug rules are obeyed or

not. The flexibility of the present approach should also allow

the investigation of whether individual C�s selected by

extremum conditions (like the radial distance) occur at

symmetry-related positions with rational indices, in a way

similar to what has been shown to be the case for the hept-

agonal GroEL–GroES chaperonin complex (Janner, 2003).

One expects that the C�s at these special positions play a

privileged rôle in the overall structural stability and in the

local conformational changes required by the transition from

an empty procapsid to the capsid filled with viral genome or

even in the assembly process of a viral capsid.
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